Гидродинамика - definizione. Che cos'è Гидродинамика
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Гидродинамика - definizione

НАУКА, ИЗУЧАЮЩАЯ ДИНАМИКУ ДВИЖЕНИЯ ЖИДКОСТЕЙ
Гидрогазодинамика; Механика жидкостей; Механика жидкости; Механика жидкости и газа; Аэрогидродинамика; Механика жидкости, газа и плазмы

гидродинамика         
ж.
Раздел гидромеханики, в котором изучается движение жидкостей и воздействие их на обтекаемые ими твердые тела.
ГИДРОДИНАМИКА         
и, мн. нет, ж.
Раздел гидромеханики, изучающий законы движения несжимаемой жидкости и взаимодействие ее с твердыми телами. Гидродинамический - относящийся к гидродинамике.||Ср. ГИДРОСТАТИКА.
Гидродинамика         
(от Гидро... и Динамика)

раздел гидромеханики (См. Гидромеханика), в котором изучаются движение несжимаемых жидкостей и взаимодействие их с твёрдыми телами. Методами Г. можно исследовать также движение газов, если скорость этого движения значительно меньше скорости звука в рассматриваемом газе. При скорости движения газа, близкой к скорости звука или превышающей её, начинает играть заметную роль сжимаемость газа и методы Г. уже неприменимы. Такое движение газа исследуется в газовой динамике (См. Газовая динамика).

При решении той или иной задачи в Г. применяют основные законы и методы механики и, учитывая общие свойства жидкостей, получают решение, позволяющее определить скорость, давление и касательную напряжения (См. Напряжение) в любой точке занятого жидкостью пространства. Это даёт возможность рассчитать, в частности, и силы взаимодействия между жидкостью и твёрдым телом. Главными свойствами жидкости, с точки зрения Г., являются её лёгкая подвижность, или текучесть, выражающаяся в малом сопротивлении жидкости деформациям Сдвига, и сплошность (в Г. жидкость считается непрерывной однородной средой); кроме того, в Г. принимается, что жидкости не сопротивляются растяжению.

Основные уравнения Г. получаются путём применения общих законов физики к элементарной массе, выделенной в жидкости, с последующим переходом к пределу при стремлении к нулю объёма, занимаемого этой массой. Одно из уравнений, называемое Неразрывности уравнением, получается путём применения к элементу, выделенному в жидкости, закона сохранения массы: другое уравнение (или в проекциях на оси координат - три уравнения) получается в результате применения к элементу жидкости закона о количестве движения (См. Количество движения), согласно которому изменение количества движения элемента должно совпадать по величине и направлению с импульсом силы, приложенной к нему. Решение общих уравнений Г. исключительно сложно и может быть доведено до конца не всегда, а только в небольшом числе частных случаев. Поэтому приходится упрощать задачи путём отбрасывания в уравнениях членов, которые в данных условиях имеют менее существенные значение для определения характера течения. Например, в ряде случаев можно с достаточной для практики точностью описать реально наблюдаемое течение, пренебрегая вязкостью жидкости; т. о., приходят к теории идеальной жидкости, которую можно применять для решения многих гидродинамических задач. В случае движения жидкостей с весьма большой вязкостью (густые масла и т.п.) величина скорости течения изменяется незначительно и можно пренебречь ускорением. Это приводит к др. приближённому решению задач Г.

В Г. идеальной жидкости особенно важное значение имеет Бернулли уравнение, согласно которому вдоль струйки жидкости имеет место следующее соотношение между давлением р, скоростью v течения жидкости (с плотностью ρ) и высотой z над плоскостью отсчёта p + 1/2ρv2 + ρgz = const. (g - ускорение свободного падения). Это уравнение является основным в гидравлике (См. Гидравлика).

Анализ уравнений движения вязкой жидкости показал, что для геометрически и механически подобных течений (см. Подобия теория) величина ρvl/μ= Re должна быть постоянной (l - характерный для задачи линейный размер, например радиус обтекаемого тела или сечения трубы и т.п., ρ, v и μ - соответственно плотность, скорость, коэффициент вязкости жидкости). Эта величина называется Рейнольдса числом и определяет режим движения вязкой жидкости: при малых значениях Re (для трубопроводов при Re = vcpd/ν ≤ 2300, где d - диаметр трубопровода, ν = μ/ρ) имеет место слоистое, или Ламинарное течение, при больших значениях Re струйки размываются и в жидкости происходит хаотическое перемешивание отдельных масс; это т. н. Турбулентное течение.

Решение основных уравнений Г. вязкой жидкости оказалось возможным найти только для крайних случаев - для Re очень малых, что соответствует (при обычных размерах) большой вязкости, и для Re очень больших, что соответствует течениям жидкостей с малой вязкостью. В ряде технических вопросов особо важны задачи о течениях жидкостей с малой вязкостью (вода, воздух). В этом случае уравнения Г. можно значительно упростить, выделив слой жидкости, непосредственно прилегающий к поверхности обтекаемого тела, в котором вязкостью пренебречь нельзя; этот слой называется пограничным слоем (См. Пограничный слой). За пределами пограничного слоя жидкость может рассматриваться как идеальная. Для характеристики движений жидкости, в которых основную роль играет сила тяжести (например, волны, образующиеся на поверхности воды при ветре, прохождении корабля и т.д.), в Г. вводится др. безразмерная величина v2/gl = Fr, называемая числом Фруда.

Практические применения Г. чрезвычайно разнообразны. Г. пользуются при проектировании кораблей и самолётов, расчёте трубопроводов, насосов, гидротурбин и водосливных плотин, при исследовании морских течений и речных наносов, изучении фильтрации грунтовых вод и нефти в подземных месторождениях и т.п. Об истории Г. см. в ст. Гидроаэромеханика.

Лит.: Прандтль Л.. Гидроаэромеханика, пер. с нем., М., 1949.

Wikipedia

Гидродинамика

Гидродина́мика (от др.-греч. ὕδωρ «вода» + динамика) — раздел физики сплошных сред и гидроаэродинамики, изучающий движение идеальных и реальных жидкостей и газа, и их силовое взаимодействие с твёрдыми телами. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения.

Esempi dal corpus di testo per Гидродинамика
1. Закржевский начал перечислять: гидродинамика, аэродинамика, сопромат...
2. Там чисто механические задачи возникали - гидродинамика в канале.
3. Гидродинамика спуска аппаратов, изначально рассчитанных на работу в соленой океанской воде, более сложная.
4. Систер Владимир Георгиевич (всего 23 работы) Гидродинамика винтового канала: Учеб. пособие. 2003 г.
5. И только Павел Мостовых пойдет на специализацию "Гидродинамика" в Балтийский государственный технический университет.
Che cos'è гидродинамика - definizione